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Abstract Assuming a D ≥ 4 dimensional FLRW (Friedmann–Lemaître–Robertson–Walker)
inspired ansatz with spatial curvature being a non-trivial function of time k(t) in a class of
metric and Jordan frame F(R) gravity models, non-existence theorems for several types of
sources are derived in a simple manner (using specific form of the modified gravity Einstein
tensor components).
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1 Introduction and Motivation

Present day cosmology faces several challenges. One of the newest is that modern astro-
physical observations [1–3] suggest that the Universe has entered (late time) accelerated
expansion phase. (Note that there are several doubts concerning that conclusion [4, 5] and
alternatives based on averaging not exactly homogeneous and isotropic space [6].) It seems
a peculiar substance called dark energy or modification of General Relativity (GR) and per-
haps both are required to model this. A review and further references are presented e.g.
in [7]. Some other yet unexplained puzzles [8, 9] have co-sparked an intensive study of
modified gravity models, a trend which is followed also in this article.

Some of the reasons to study the inhomogeneous k(t) FLRW metric (17) are

– Astrophysical applications come to mind. Consider initial (resp. late) time constant k,

it may represent an emerging (resp. decaying) spherically symmetric object in a non-
perturbative regime.

– Since matter distribution in space is not perfectly homogeneous, the FLRW metric is only
an approximation in an averaged model. Effective approximation of these imperfections
can be taken to be an effective k(t) FLRW metric—as can be found in [10, 11].
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– Some reasons to study inhomogeneous models in general are presented in an extensive
review [12] and they are demonstrated by the results of e.g. [13, 14].

– Certain modified gravity models suggest that (total) space-time is higher dimensional and
4D we experience can be represented as an extended object, a brane, in the total space-
time. One may also approach the value of space-time dimension from a different point
of view—study a general D and find if D = 4 is special in some sense, thus justifying
one time-like and three space-like dimensions [15]. This is a motivation to study higher
dimensional problems and their solutions as well.

– If k changes sign, then spatial topology is changed—a process that can be thought of in
an extra-dimensions and brane-world models.

Indeed, considering a non-trivial copy (non-constant k) with one spatial dimension,
change of k from non-positive to positive values represents compactification of that di-
mension.

Moreover, the above mentioned copy as a 2-dimensional (including the time) part of
N > N∗ = 1 metric is conformally flat and coordinate transformation to the conformally
flat form transforms (17) into

ds2 = e2a(t,r̄)dt2 + e2a(t,r̄)dr̃2 +
∑

A:trivial

e2aA(t,r̄)dl2
A

which reassembles some of the brane-world (inspired) ansätze studied in literature
[16, 17].

– Quite recently, an article [18]—and a related comment [19]—operating with FLRW-like
metric with curvature parameter k varying in time has appeared. The authors speculate
of a possible stringy quantum gravity motivation for such an ansatz, which—if truly
justified—adds more appeal to the metric ansatz (17).

In author’s opinion, all the above items represent a stimulation for a search of an exact k(t)

FLRW solution to find out if it can contribute to these topics. If the answer is positive, then
to what extent and under what conditions?

It is said that every metric is a solution to (modified) Einstein equations with appropri-
ate matter part contribution(s). Of course, the matter source has to be reasonable. Author’s
search for an exact k(t) FLRW metric (beyond Ströbel’s solution [20]) has yielded some
negative results and they are presented in this article.

To author’s best knowledge, the problem is not studied in literature, at least in the simple
manner applied (and to the extent as) in this article. Reference [12] mentions existence of
a perfect fluid with heat flow standard GR solution [20] and its later re-discoveries. The
GR perfect fluid (-like sources) non-existence result is rather known, see the claim in [19]
referring to [21].

When compared to the above references, this work also deals with some other matter
sources in F(R) gravity models.

F(R) model [22–28] represents one of the generalised gravity model. Some specific
functions F(R), e.g. F = R + λRn and F = R + λR−1, were able to model accelerated
expansion but they do not meet requirements that come from Solar system measurements
and some other cosmological desiderata, see [29] for the former model. Attempts to find
F(R) models that evade the above mentioned problem lead to several candidates for the
function F(R) that are presented e.g. in [23–28]. One of them involves ratio of polynomials,
which will also be treated—the model (28). The other model (29) seems to be promising in
the standard FLRW background in the light of the dynamical system study presented in [30].
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This work relates to [18] by showing it is uneasy to obtain solution of the form assumed
in [18] (beyond the Ströbel’s one) assuming some standard matter sources in a class of
metric F(R) models.

The approach adopted in this article relies on simple form of the k(t) FLRW metric and
consequently its (metric) Riemann tensor components in the chosen frame. Metric compat-
ibility of the F(R) gravity models is supported by [31, 32] in which well-formulation of
the problem, i.e. metric compatible F(R) models in presence of matter, is derived in four
dimensional space-time. The paper’s results on Palatini F(R) are inconclusive, see recent
critics [33], i.e. it is possible results in case of metric F(R) do not apply to its Palatini coun-
terpart. Then, the metric F(R) may seem to be favoured at the light of the above mentioned
analysis.1

The author believes that simplicity of this approach, though restrictive, enables for a plain
judgement of admissibility of some given matter sources without the need of solving partial
differential equations (that may appear in case of a more general ansatz).

This paper is written, as far as the structure concerns, as a mathematical text because the
author believes it enables for a well arranged presentation which is organised as follows:

Properties of some standard matter sources in an assumed background geometry (17) are
examined in Sect. 2. We obtain gravity model independent conditions—consistency rela-
tions (CRs)—quadratic in the metric stress-energy-momentum tensor of the matter sources.

Consequently a suitable mathematical framework is developed, in order to treat the above
mentioned CRs effectively, in Sect. 3.

Curvature related tensors are calculated in Sect. 4. Then, specific metric and Jordan frame
F(R) gravity models are introduced in Sect. 5 and examination of the matter sources con-
ditions follows in Sect. 6. The overall results are summarised in Theorem 1 (Table 2) in
Sect. 7.

Units in which all c = 8πG = � = 1 are used. The convention regarding space-time
indices is

x = (xμ) = (x0, (xi)), (xi) = (x1 = r, x� ≡ ϑ�).

2 Matter Sources in an Assumed Background

We shall examine several familiar relativistic sources in the k(t) FLRW space-time. The
sources are assumed to be minimally coupled to gravity, i.e. the total Lagrangian can be
separated in the matter and gravity part. Then variational equations of motion (EOM) for
the metric, EOMg, can be written—in the units chosen—as

EOMg : MG = T , T μν = 2√|g|
δ
√|g|Lmatter

δgμν

.

The MG corresponds to the variation of the gravitational part of the Lagrangian. Since we
shall deal with modified gravity models, we refer it as the generalised Einstein tensor. Its
left subscript M indicates inclusion of a possible departure from the standard GR Einstein
tensor into MG.

1Though it may be hard to obtain a general result—in the spirit of [31, 32]—concerning the Cauchy problem,
examination of a perfect fluid matter source in metric affine F(R) gravity shows the problem is both well-
posed and well-formulated [34] thus indicating that metric F(R) need not be favoured that much.
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2.1 Consistency Relations (CRs)

Definition 1 Let us write a conformally flat and (spatially) spherically symmetric metric
ansatz for a D-dimensional space-time (D ≥ 4)

ds2 = dt2 − e2a(t)h2dl2, h−1 ≡ 1 + 1

4
k(t)r2, (1)

dl2 denotes a Euclidean distance in (D − 1)-dimensions and r represents radial coordinate.
The metric (1) with k̇ �= 0, dot stands for derivative with respect to time, is called a non-
trivial k(t) FLRW metric.

Remark 1 This metric ansatz is closely related to the Stephani universe, see [12]. Our choice
of coordinate system is different from the one widely used papers examining the aforemen-
tioned class of space-times; it makes obvious the reason of inhomogeneity lies in promoting
k to a function of time.

Postulate 1 All considered matter sources are postulated to respect the space-time symme-
try. The implications for scalars φ and vectors v and the Yang–Mills field (to be denoted
by A) strength tensor (F = DA), the latter being subject to a less severe constraint, are
presented in (2).

φ =φ(t, r),

v =v0(t, r)∂0 + v1(t, r)∂1,

F =Fμνdxμ ∧ dxν = F̂αβ(t, r)eα ∧ eβ,

⎫
⎪⎬

⎪⎭
(2)

where an over-hat indicates the corresponding tensor components are written in an ortho-
normal frame

eα = eα
μdxμ =√|gμμ|δα

μdxμ.

We shall treat the k(t) FLRW metric (1) at first and then comment on some generalisa-
tions.

Definition 2 A perfect fluid-like source(s’ class) is defined by the stress-energy-momentum
tensor

Tμν = χvμvν + κgμν, (3)

χ and κ are scalar functionals of the matter fields, v is a vector.

Remark 2 The source class in Definition 2 implicitly contains added prescribed varying
cosmological constant (shifting κ → κ + �(t, r)). Moreover, if the starting Lagrangian,
unspecified yet, is independent of derivative of metric, we may consider prescribed vary-
ing gravitational constant G(t, r) since it can be absorbed into the parameters χ and κ by
rescaling them. Such rescaling will not alter subsequent considerations.

Some representatives of the source class in Definition 2 are Bulk viscous fluid, see
e.g. [35], and scalar field φ. The latter with Lagrangian

L = �(X,φ) + w(φ)�φ, X = 1

2
(∂φ)2, � = ∇ρ∇ρ,

where � and w are arbitrary functions.
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Both representatives are sources of interest in cosmology—indeed, scalar fields with non-
canonical Lagrangian are used as dark matter models [7, 36] in a similar way to the exotic
equation of state barotropic fluids, e.g. (extensions of) Chaplygin gas [37, 38].

Corollary 1 The perfect-fluid-like source metric stress-energy-momentum tensor allows for
obtaining a relation quadratic in its orthonormal frame components with no other objects
entering.

Proof The metric stress-energy-momentum tensor is

T̂00 =χ(v̂0)
2 + κ,

T̂11 =χ(v̂1)
2 − κ,

T̂�� =−κ,

T̂01 =χv̂0v̂1.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4)

Substituting for κ into T̂00 and T̂11 enables us to express components of the vector v and
input them into T̂01 to end up with

0 = −
(
T̂01

)2 +
(
T̂00 + T̂��

)(
T̂11 − T̂��

)
. (5)

�

Corollary 2 In case of both co-moving bulk viscous fluid with heat flow and co-moving bulk
viscous fluid with null fluid, the sources’ metric stress-energy-momentum tensors allow for
obtaining a relation linear in their orthonormal frame components with no other objects
entering.

Proof Let us write, as in [12],

T μν = T
μν

BVF + T
μν

NF + T
μν

HF + �gμν. (6)

The new parts of the metric stress-energy-momentum tensors are

T
μν

HF = 2q(μuν), T
μν

NF = τkμkν.

The appearing quantities (the bulk viscous fluid velocity u, heat flow q and null fluid veloc-
ity n) are assumed to satisfy some constraints

1 = g(u,u) = g(k,u); 0 = g(k, k) = g(q,u) (7)

in order to make the splitting unique.
We omit (shear-)viscous fluid and thermo-dynamical relations associated with the heat

flow contribution and the EM field when compared to [12]. Since this work reports of non-
existence results, based solely on EOMg, these relations are of no importance here.

Let us note that the heat flow addition can be expected due to inhomogeneity which
indicates possible non-zero temperature gradient.

The metric stress-energy-momentum tensor of the source (6) has (at most) four indepen-
dent orthonormal frame components which are
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T̂00 = (ρ + p)û2
0 − p + 2q̂0û0 + τ k̂2

0 + �,

T̂11 = (ρ + p)û2
1 + p + 2q̂1û1 + τ k̂2

1 − �,

T̂�� = +p − �,

T̂01 = (ρ + p)û0û1 + q̂0û1 + û0q̂1 + τ k̂0k̂1.

We shall view the above relations, together with the (7), as a set of algebraical equations
which can be solved with respect to the parameters that appear—namely the scalars and
vectors (each of u, q and k has at most two non-zero components as implied by the space-
time symmetry).

The assumption of co-moving bulk viscous fluid simplifies the metric stress-energy-
momentum tensor since (7) yields

q̂0 = û1 = 0, û0 = k̂0 = |k̂1| = 1

and the metric stress-energy-momentum tensor becomes

T̂00 = ρ + τ + �,

T̂11 = p + τ − �,

T̂�� = p − �,

T̂01 = q̂1 + skτ,

where sk is defined as sk ≡ k̂1/k̂0. The above relations reveal

τ = T̂11 − T̂��, q̂1 = T̂01 − sk

(
T̂11 − T̂��

)
. (8)

Assuming combination co-mov. bulk viscous fluid with heat flow imposes τ = 0. Similarly
assuming combination co-mov. bulk viscous fluid with null fluid imposes q̂1 = 0. The two
equations resulting from (8) are the CRs. �

Corollary 3 The non-linear Abelian Yang–Mills field of the form (2) has diagonal metric
stress-energy-momentum tensor.

Proof The non-linear Abelian Yang–Mills field is described by the Lagrangian L = L(F 2)

and

Tμν = −4LF FμρF
ρ
ν + Lgμν, (9)

(EOMA)μ = −2(LF Fμρ);ρ (10)

and the notation is F ≡ DA = dA, F 2 is traced over Yang–Mills Lie algebra indices and
LF = ∂L

∂F 2 . Non-linear EM field is an appealing generalisation of the linear case because the
non-linearity can cure singularities in the field strength F, e.g. [39].

In order to obtain a non-zero T01 component, we must have

0 �= T̂01 ∝ F̂0βF̂
β

1 =
∑

�

η��F̂0�F̂1�.
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Thus there should exist at least one index � such that the both F -components appearing
in the above equation are non-vanishing. Such terms contradict the obvious space-time
isotropy.

It is an easy exercise to show that operating with both EOMA and the identity dF = 0
reveals off-diagonal terms in T cannot be produced. �

Remark 3 Trace of (9) is

TrT = DL − 4LF F 2

and it vanishes in case of linear D = 4 Yang–Mills field. TrT = 0 can be easily extended to
a special case of non-linear Yang–Mills fields with

L = b
(
F 2
)D/4

(11)

where b is a constant but it can also be an externally prescribed, i.e. non-dynamical, function.

Corollary 4 Postulate 1 implies that Proca (vector) field A, with cosmological con-
stant, matter source metric stress-energy-momentum tensor allows for obtaining a relation
quadratic in its orthonormal frame components with no other objects, apart from the cos-
mological constant, entering.

Proof Proca field matter source with cosmological constant is depicted by L = 1
2 [bF 2 +

m2A2] + � and

Tμν = −2bFμρF
ρ
ν − m2AμAν + Lgμν. (12)

It can be viewed e.g. as the (linear) EM field with mass m.

Proca field can also be seen as a particular case of the Einstein–Aether Lorentz-breaking
vector field, though normalisation condition was not imposed. Indeed, we may rearrange the
Lagrangian so that it yields

L = 1

2

[
bF 2 + m̄2A2

]+ λ(A2 − 1) + �̄,

where the new parameters are

m̄2 = m2 − 2λ, �̄ = � + λ.

Promoting λ to a Lagrange multiplier enforces the normalisation constraint as EOMλ. The
form of EOMg is unaltered by such a rearrangement. The vector field A is time-like and
it defines a preferred time-like direction, hence Lorentz violation occurs an can be studied
within covariant framework [40].

The Postulate 1 restricts the vector A so that

−2T̂00 = m2Â2
0 + m2Â2

1 + bF 2 − 2�,

−2T̂11 = m2Â2
0 + m2Â2

1 − bF 2 + 2�,

−2T̂�� = m2Â2
0 − m2Â2

1 + bF 2 + 2�,

−T̂01 = m2Â0Â1.
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Similarly to the case of the source (3), we may eliminate the bF 2 term from both T̂00 and
T̂11 by means of T̂�� and use the T̂01 to arrive at

0 = −
(
T̂01

)2 +
(
T̂00 − T̂�� − 2�

)(
T̂11 + T̂�� + 2�

)
. (13)

Letting both b and m be non-dynamical functions does not affect the elimination. �

Remark 4 Vector gauge fields and vector-like fields, including massive and non-linear ones,
were examined in the cosmological context e.g. in [41–44].

Corollary 5 Metric stress-energy-momentum tensor of charged mass-less Dirac field
(which may correspond to neutrinos when neglecting their mass) ψ has vanishing trace.

Proof The Dirac (bi-)spinor field ψ is described by [45]

L = 1

2
ψ̄[i/∇ − m]ψ + h.c.

and the variational metric stress-energy-momentum tensor and EOMψ

T μν = −iψ̄γ (μ∇ν)ψ + h.c., (14)

EOMψ = [i/∇ − m]ψ, (15)

where slash notation is /B ≡ γ μBμ, h.c. denotes hermitian conjugate of the preceding
term(s), ∇ is gauge-covariant derivative and m is mass of the field.

Dirac spinor Lagrangian can be also written as

L = 1

2
ψ̄EOMψ + h.c.,

i.e. it vanishes on-shell (EOMψ satisfied). This is the reason why the stress-energy-
momentum tensor contains no Lg term as usual.

As a result,

TrT = −iψ̄/∇ψ + h.c. = −2(L + mψ̄ψ) = −2mψ̄ψ.

Setting m = 0 gives the statement of the above Corollary. �

Remark 5 In retrospect, we may say five distinct (classes of) matter sources were treated.

– Perfect-fluid-like source. Two examples are scalar field and bulk viscous fluid.
– Co-moving bulk viscous fluid with either heat flow or null fluid.
– Sources with diagonal metric stress-energy-momentum tensor. Two examples are Abelian

Yang–Mills field subject to Postulate 1 and co-moving bulk viscous fluid (and their non-
interacting combinations).

– Sources with trace-free metric stress-energy-momentum tensor. E.g. mass-less (Yang–
Mills charged) Dirac field, Yang–Mills field with the Lagrangian (11), the bulk viscous
fluid with both heat flow and null fluid with equation of state p = 1

D−1ρ and their non-
interacting combinations.

The bulk viscous fluid with both heat flow and null fluid follows from (6) with � = 0
and the additional conditions (7) together with the chosen equation of state.

– The Proca field.
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2.2 Generalising the CR

Lemma 1 The Rastall generalisation [46, 47] does not alter the CRs of perfect-fluid-like
sources, the co-moving bulk viscous fluid with heat flow, co-moving bulk viscous fluid with
null fluid, the sources with diagonal or trace-free metric stress-energy-momentum tensor.

Moreover, Rastall generalisation of an arbitrary matter source combination with the
Rastall parameter satisfying Dγ = −1 implies 0 = TrTRastall.

Proof Rastall modification adds a term proportional to metric, i.e. a diagonal contribution,
by transforming the metric stress-energy-momentum tensor as follows

T μν → T
μν

Rastall = T μν + γ (TrT )gμν.

– In case of perfect-fluid-like and co-moving bulk viscous fluid with either heat flow or null
fluid models, we may view the Rastall generalisation as adding an inhomogeneous cos-
mological constant � = TrT . Both (5) and (8) are not altered in presence of cosmological
constant.

– The diagonal metric stress-energy-momentum tensor remains diagonal, since the Rastall
addition is proportional to (diagonal) metric.

– The trace of trace-free metric stress-energy-momentum tensor vanishes and so Rastall
generalisation does not modify the metric stress-energy-momentum tensor at all.

– The Dγ = −1 case is obvious. Trace of the Rastall generalised metric stress-energy-
momentum tensor reveals

TrTRastall = Tr

[
T − 1

D
(TrT )g

]
= 0. �

Lemma 2 The Rastall generalisation of the Proca field (12) subject to Postulate 1 allows
for obtaining a CR.

Proof Taking trace of the modified EOMg enables us to express the non-Rastallized metric
stress-energy-momentum tensor as

Tμν = MGμν − γ

1 + Dγ
(Tr MG)gμν.

We have assumed that Dγ �= −1. If Dγ = −1, then one obtains Tr MG = 0.

We may proceed as in the Corollary 4 to obtain

0 = −
(

MĜ01

)2 +
(

MĜ00 − MĜ�� − 2γ

1 + Dγ
(Tr MG) − 2�

)

×
(

MĜ11 + MĜ�� + 2γ

1 + Dγ
(Tr MG) + 2�

)
.

Multiplying by [1 + Dγ ]2 and writing out the trace term yields

0 = −
(
[1 + Dγ ]MĜ01

)2 +
(

MẐ0�

)(
MẐ1�

)
(16)
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with the MẐ-quantities defined as

MẐ0� = +[1 + (D − 2)γ ]MĜ00 + [2γ ]MĜ11 − [1 − (D − 4)γ ]MĜ�� − 2[1 + Dγ ]�,

MẐ1� = +[2γ ]MĜ00 + [1 + (D − 2)γ ]MĜ11 + [1 − (D − 4)γ ]MĜ�� + 2[1 + Dγ ]�.

One can easily see that (16) reduces to (13) in case of γ = 0. �

Definition 3 A (spatial) copy-cat of the metric (1) is defined as a spatial extension by con-
sidering more copies of spatial part of the original metric (1), i.e.

ds2 = dt2 −
N∑

A=1

e2aA(t)h2
Adl2

A. (17)

We may consider k̇A = 0 for some, but not all, copies. The copies with k̇A �= 0 are called non-
trivial and their total number is denoted by N∗. If the spatial dimension of a given copy A

is WA, we define DA ≡ WA + 1 (the addition +1 represents including the time-dimension).
The coordinates will be labelled as

x =
(
x0 = t,

{
(xiA)

}N
A=1

)
,

each copy spatial coordinates consists of a radial one and angular ones,

(xiA) = (xi
A) = (x1A = rA, (x�A = ϑ�A)

)
.

We use spherical coordinates on each copy. The “omnipresent” time coordinate t ≡ x0 ≡ x0
A∀A is “copy-free”.

We shall consider the copy-cat generalisation of the Rastall generalised CR.

Postulate 2 All considered matter sources are postulated to respect the space-time symme-
try. The implications for scalars φ and vectors v and the Yang–Mills field, the latter being
subject to a less severe constraint, are presented in (18).

φ =φ(t, {r}∗),

v =v0(t, {r}∗)∂0 +∑∗
A v1A(t, {r}∗)∂1A

,

F =Fμνdxμ ∧ dxν = F̂αβ(t, {r}∗)eα ∧ eβ,

⎫
⎪⎬

⎪⎭
(18)

where {r}∗ is collection of radial coordinates of non-trivial copies and
∑∗ means sum over

non-trivial copies.

Remark 6 The sources considered are extended to the copy-cat geometry by use of Postu-
late 2 and by the following additional prescriptions in the case of the perfect-fluid-like and
co-moving bulk viscous fluid with either heat flow or null fluid sources.

Both the κ parameter and pressure p are extended to be anisotropic, i.e. we have
(A)κ(t, {r}∗) and (A)p(t, {r}∗) where the copy-index A indicates the functions are in prin-
ciple different on different copies.

Since we deal with more spatial copies, we shall consider Dcopy = 2 disregarded in the
single-copy case (N = 1). It turns out this value of Dcopy puts restrictions on fluid-like
sources (namely parameters κ, implicitly including the cosmological constant �, and p−�)
if we demand that CR(s) can be obtained.
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Table 1 Rastall copy-cat CRs
(copy index A suppressed)

BVF = Bulk Viscous Fluid,
HF = Heat Flow, NF = Null
Fluid

Matter source, Conditions Consistency relation (CR)

Rastall trace-free sources 0 = TrTRastall

Co-mov. BVF 0 = T̂01

Co-mov. BVF + HF 0 = T̂11 − T̂��

Co-mov. BVF + NF, N∗ = 1 0 = T̂01 − sk(T̂11 − T̂��)

Abelian Yang–Mills, N = 1 0 = T̂01

Proca, Dγ �= −1, N = 1 Equation (16)

Perfect-fluid-like, N = 1 Equation (5)

Lemma 3 Consider free non-linear Abelian Yang–Mills field subject to Postulate 2. EOMA

and the identity DF = 0 imply that the only non-vanishing linearly independent components
are/can be

F01A
, FWA−1:WA

, WA ≥ 3, F1A1B
(B �= A).

Proof Straightforward extension of the N = N∗ = 1 (omitted) treatment. �

Lemma 4 Assuming the same matter sources as in the single copy case, we obtain the same
set of CRs if we apply following restrictions on the copy-cat space-time

– Co-moving bulk viscous fluid with null fluid: N∗ = 1, all copies—except for one—are
trivial k(t) FLRW satisfying k̇ = 0.

– Perfect-fluid-like: only a “single” copy, i.e. N = 1,

– Proca field: N = 1.

– The Abelian Yang–Mills field: N = 1.

Assume the fluid(-like) sources with κR = 0 or pR − �R = 0, subscript ‘R’ indicates Rastall
generalised quantity. The corresponding CRs retain their form in the following meaning:
case of Dcopy > 2 set corresponding copy MĜ�� = 0, an additional CR; case of Dcopy = 2,

there is no ϑ -coordinate in this copy, hence MĜ�� ≡ 0, no additional CR.

The results are presented in the Table 1, copy-index is suppressed. Some details concern-
ing the matter sources are presented in the Remark 5.

Proof Let us check each of the matter sources separately.
The (2 ≤) Dcopy < 4 will be considered in case of the fluid(-like) models since these

will allow to extend the above derived CR to the copy-cat space-time with N ≥ 2, see also
Remark 6.

– Perfect-fluid-like: We have to generalise the metric stress-energy-momentum tensor
in (4). v is a vector and hence it has the form given in (18), Postulate 2. This however
does not suffice—then all the angular components T̂�A�A

, and consequently correspond-
ing components of the generalised Einstein tensor, are equal for all copies. A sufficient
modification is to generalise the κg term as follows κg → � = (�μν); the components
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are given as

�00 = (0)κg00, �iAjB = (A)κ giAjB .

Then, (4) changes by appropriately labelling κ by corresponding copy-index. Thus (5)
cannot be obtained unless a copy examined, say A, satisfies (A)κ =(0) κ.

In case of N > 1, this extension is not democratic with respect to remaining copies.
Still, one may try to justify it in case of N > N∗ = 1 by claiming that the k̇ �= 0 copy is
special and hence some sort of non-democracy can be expected. But such a reasoning is
weak and we rather restrict ourselves to the case of N = 1.

A more detailed investigation in the geometry (17) N ≥ N∗ ≥ 2 shows CRs can be
obtained by using T̂1A1B

, B �= A, components but we shall not deal with them here.
– Co-moving bulk viscous fluid with heat flow is not altered except for adding a copy-index

if the pressure term is generalised as follows

p[gμν − uμuν] → �μν, �00 = 0, �iAjB = (A)pgiAjB .

T̂�� component must be involved which requires Dcopy > 2. In case of [pR − �R] = 0,

one obtains a CR

Dcopy ≥ 2: 0 = −[pR − �R] = T̂11.

We assume the Rastall generalisation term is included within �R.

– Co-moving bulk viscous fluid with null fluid: We shall assume the same pressure term
generalisation as in case of co-moving bulk viscous fluid with heat flow. |k̂1| = 1 was
used when deriving the CR. This need not hold since (possible ME1A1B

�= 0 suggests)
k̂1A

need not vanish for more copies.
Thus proceeding as in the case of single copy yields

−T̂01A
+ sk

(
T̂1A1A

− T̂�A�A

)
= −q̂1A

+ τ
(
k̂1A

[
−sk(A) + k̂1A

])
.

But k̂1A
need not equal sk(A). A simple example is

k̂0 = 1, k̂11 = cos2 ϕ, k̂12 = sin2 ϕ,

with all other k̂1A
vanishing; ϕ may be a function of t and {r}∗. k̂0 = 1 is still fixed by

g(u, k) = 1 and by the fact that the bulk viscous fluid is co-moving.
In order to obtain a CR as in case of N = 1, we need |k̂1| = 1. This implies all other

spatial sections/copies must be homogeneous and isotropic so that they do not contribute
into the vector k, then only one radial component is non-vanishing and the equation
g(k, k) = 0 yields the desired relation for the component.

The Dcopy = 2 CR cannot be obtained unless [pR − �R] = 0 which implies

Dcopy = 2: 0 = −T̂01 + skT̂11.

– Rastall trace-free metric stress-energy-momentum tensor sources: Since we used no as-
sumptions on the space-time in the derivation of the CR, 0 = TrT is preserved.

– Proca field: In the single copy case, it was possible to write the metric stress-energy-
momentum tensor in terms of three parameters—(two non-zero) components of the vector
A and the scalar bF 2. We were able to do this because

2bF̂αγ F̂
γ

β = [δ0
αδ

0
β − δ1

αδ
1
β

]
bF 2, F 2 = −2(F̂01)

2.
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This is no longer true since

2bF̂αγ F̂
γ

β = −
∑

B

δ0
αδ

0
β(F̂01B

)2 −
∑

A,B

2δ0
(αδ

1A

β) F̂01B
F̂1A1B

+
∑

A,B

δ1A
α δ

1B
β

(
F̂1A0F̂1B 0 −

∑

C

F̂1A1C
F̂1B 1C

)
,

F 2 = −2
∑

A

(F̂01A
)2 + 2

∑

A>B

(F̂1A1B
)2.

This time, writing out components involving copy A reveals for the difference and sum

T̂00 − T̂�� = +b
[
−2F̂0γ F̂

γ

0 + F 2
]
+ m2

[
−Â2

0 + A2
]
+ 2�,

T̂11 + T̂�� = +b
[
−2F̂1γ F̂

γ

1 − F 2
]
+ m2

[
−Â2

1 − A2
]
− 2�

and individual components

T̂01 = −2b
∑

B �=A

F̂01B
F̂

1B

1 − m2Â0Â1,

T̂11B
= −2b

∑

B �=A

⎡

⎣F̂10F̂1B 0 −
∑

C �=A,B

F̂11C
F̂1B 1C

⎤

⎦− m2Â1Â1B
.

The copy index A was suppressed and the Rastall parameter γ does not appear because
it is assumed the Rastall addition was already transfered to the gravity part of EOMg, i.e.
MG.

An additional term in T̂01A
appears so that the elimination via square of T̂01A

is not
possible.

It is clear, without explicitly writing out the A2 and bF 2 terms, that the Proca CR (16)
cannot be obtained in a general case.

Consider a specific case when all the additional terms vanish, i.e.

F01B
= F1B 1C

= 0, ∀B �= C, ∀C.

What space-time does correspond to such a situation?
Zeroing F01B

, B �= A requires all other copies being both isotropic and homogeneous
(A0 is constant on these copies and AiB = 0, ∀iB ). The above condition suffices also for
vanishing of F1B 1C

, B �= C.

Thence we may conclude that the additional terms do not appear (and obtaining CR is
possible) in case of the N∗ = 1 copy-cat ansatz.

Consider a case of trivial copies added. The metric stress-energy-momentum tensor
components on these copies consist of a single term, namely Lg. But its orthonormal
frame components are the same on all the trivial copies (and also on the non-trivial copy,
the T̂�� components).

We have no additional parameters, such as κ and p in case of the perfect-fluid-like and
co-moving bulk viscous fluid with either heat flow or null fluid, to ensure the anisotropy
required.
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But this lack of diversity of the metric stress-energy-momentum tensor orthonormal
frame components implies the same for the generalised Einstein tensor via EOMg. Such
implication is unacceptable as can be seen from the standard GR model.

0 = Ĝyy − Ĝ�� ⇒ k̇ = 0,

where Ĝyy stands for a trivial copy component. The implication indicated follows from
Lemma 5 and it is highly undesirable. For this reason, we restrict ourselves to the case of
a “single copy”, N = 1.

Once again, restriction on the dimension of the non-trivial copy in question occurs.
Equation (16) involves T̂�� and hence it follows Dcopy > 2; indeed, one cannot obtain CR
in case of Dcopy = 2.

– The diagonal metric stress-energy-momentum tensor sources:

The Abelian Yang–Mills field. According to Lemma 3, the metric stress-energy-
momentum tensor need not remain diagonal (within each copy), the off-diagonal term
is produced as follows

T̂01A
= −4LF

∑

B �=A

F̂01B
F̂

1B

1A
.

Thus we restrict ourselves to N = 1, no copy-cat.
Co-moving bulk viscous fluid still remains co-moving and therefore diagonal. �

Remark 7 The Rastall generalised EOMg with Dγ = −1 can be written also as a set of two
equations

MGμν − Tμν − 1
D

(Tr[MG − T ])gμν = 0,

Tr MG = 0.

}
(19)

The choice of the specific value of the Rastall parameter may seem quite peculiar but the first
formula in (19) resembles the EOMg of unimodular gravity [48] with the added equation
assuring the trace of the generalised Einstein tensor vanishes.

In that gravitational model, |g| is non-dynamical and it therefore follows for arbitrary
metric functional M[g], with the use of

0 = δ|g| = gμνδgμν,

that

0 = δM
δgμν

δgμν ≡
[
δμ
ρ δν

τ − 1

D
gμνgρτ

]
δM
δgρτ

δgμν,

i.e. (both sides of) EOMg derived in this model are identically trace-free.

2.3 What are the CRs?

So far, the analysis was independent of the gravity model! Only the space-time symmetries
were applied to the matter sources to obtain CRs. The spatial copy-cat geometry (17) makes
clear that there are unknown functions of a single coordinate, the time t. Thus each CR is
a set of ordinary differential equations for the unknown functions—scale factors a’s and
scalar curvatures k’s.
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Then one may ask if it is possible to read out the ordinary differential equations in a
simple way. Or if it is possible to easily find some of them that tell us k̇ = 0 immediately.

It turns out that the CRs, within the gravity models to be considered, can be cast into a
form polynomial in both r2 and h(t, r). The terms with the highest power of h will be the
ones associated with a simple ordinary differential equation, leading to k̇ = 0 in most of the
cases.

3 A Suitable Class of Functions—“Q-Functions”

In this section, we construct tools necessary to deal with the highest order, in h, terms of the
CRs.

Definition 4 Let us define Q-functions by a representative

QN :M(r) ≡
N∑

n=0

M∑

m=0

yn:mr2nhm, h−1 ≡ 1 + 1

4
kr2, (20)

– yn:m and k are independent of r; in case of more spatial copies, we may write a Q-function

QNA:MA
({r}∗) =

NA∑

n=0

MA∑

m=0

yn:m({rB}B �=A)r2n
A hm

A.

– M ≥ 0 is referred as order of QN :M, yn:M are called leading (order terms’) coefficients.
– We define modulo non-leading terms ∼ as

QN :M ∼
N∑

n=0

yn:Mr2nhM ≡ (∼ QN :M).

The copy index is suppressed in what follows.
– Function QN :M with yn:m = ym:mδn,m is called diagonal.

Lemma 5 Stated by/in the below expression

0 = QN :M(r) ∀r ⇒ 0 =
N∑

n=0

(
−1

4
k

)N−n

yn:M (21)

where ∀r means for all admissible r so that h−1 �= 0.

Proof Equation (21) multiplied by h−M takes polynomial form

0 =
N∑

n=0

M∑

m=0

yn:mr2nhm−M = PJ (r) =
J∑

j=0

pj r
2j , (22)

where the (vanishing) p-coefficients can be obtained as

PJ (r) =
∑

m,n,q

yn:m
(

−1

4
k

)q (
M − m

q

)
r2(n+q) =

∑

m,n,j

yn:m
(

−1

4
k

)j−n(
M − m

j − n

)
r2j ,
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pj =
j∑

n=0

M∑

m=0

(
−1

4
k

)j−n(
M − m

j − n

)
yn:m.

The order J of the polynomial PJ (x) is

J = max{l = M + n − m | pl �= 0} ≤ M + N.

We have written J in a form of (general case) inequality since its concrete value heavily
relies on the coefficients yn:m.

As a result of (22), we may write the identity

0 =
J∑

j=0

(
−1

4
k

)N−j

pj . (23)

The binomial coefficient
(
n

k

) ∝ �(n − k + 1)�(k + 1), step function �(x) is defined as
�(x ≤ 0) = 0 and �(x > 0) = 1. Thus the step functions in binomial coefficients take care
of sums over n and j and so we may treat the summations as “independent”.

Let us consider fixed n and m to obtain coefficient standing at yn:m, i.e. we will perform
sum over j. It gives a simple combinatorial identity

∑

j

(−1)j−n

(
M − m

j − n

)
= δ(M − m)δ(j − n).

Relabelling the variables, the combinatorial identity can be written as

∑

l

(−1)l

(
M − m

l

)
= (1 + (−1))M−m = δ(M − m).

The definition of the binomial coefficients assures
(

0

l

)
= δ(l).

Thus the examined identity (23) contains only terms with m = M and j = n and it sim-
plifies to

0 =
N∑

n=0

(
−1

4
k

)N−n

yn:M

which completes the proof of (21). �

Remark 8 The above Lemma 5 can be extended to in the two following directions

– Negative powers of h, i.e. m < 0. Terms with m < 0 (are polynomials in r2 and therefore
they) can be re-interpreted as coming from the index n, i.e. the problem is reduced to the
m ≥ 0.

– Moreover, similar calculations as in the proof show that the below implication

0 = QN :M =
N∑

n=0

M∑

m=M0

yn:mrnhm, M0 > −∞, ∀r
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⇒
N∑

n=0

(
−1

4
k

) 1
2 [N−n]

yn:M

is true.
In the upcoming analysis, terms with odd n will either not appear in the leading term

or only the one leading coefficient (with odd n) will be non-zero.

Lemma 6 The set of all functions of type (20) form an associative commutative ring with
identity denoted by RQ.

Especially, finite products and finite linear combinations (with constant coefficients) of
functions of type (20) are again functions of type (20).

Proof Since we deal with special class of functions, and functions already form ring with
the specified properties, it suffices to show that RQ is closed which is straightforward. �

4 The (Copy-Cat) Riemann & Related Tensors

Corollary 6 Using the metric connection, non-vanishing independent components of the
Riemann tensor Riem expressed in an orthonormal frame (being highlighted by hat above
the corresponding quantity) are

R̂0b0b =+ä + (ȧ − 1
4 k̇r2h)2 − 1

4 (k̈ − 1
4 k̇2r2h)r2h ∼ 1

8 k̇2(r2h)2,

R̂�b�b =−(ȧ − 1
4 k̇r2h)2 − ke−2a ∼ − 1

16 k̇2(r2h)2,

R̂�0�1 =− 1
2 k̇rhe−a,

⎫
⎪⎪⎬

⎪⎪⎭
(24)

in R̂�b�b, b �= � is implicitly assumed.
The Ricci tensor is

R̂00 =−∑A(DA − 1) (A)R̂0b0b ∼A − 2
16 (DA − 1)k̇2(r2h)2,

R̂bb =+R̂0b0b − (DA − 2)R̂�b�b ∼A + 1
16 DAk̇2(r2h)2,

R̂01 =−(DA − 2)R̂0�A1A�A
= + 1

2 (DA − 2)k̇rhe−a

⎫
⎪⎪⎬

⎪⎪⎭
(25)

and the scalar curvature

R = +
∑

A

(A)R, (26)

with the A-copy contribution given by

(A)R = (DA − 1) (A)

[
−2R̂0b0b + (DA − 2)R̂�b�b

]

∼A − 1

16
(DA − 1)(DA + 2)k̇2(r2h)2 ≡ (∼A R).

The copy index A was suppressed whenever possible for the sake of brevity of the formulae
appearing; still, it was explicitly written in case of DA to avoid confusion with the total
space-time dimension D.

In case of a component of a tensor T with all indices from the same spatial copy A and
the component independent of rB, B �= A, we write e.g. (A)T μ

νρ instead of the full T μA
νAρA

.
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Proof Follows from Definition 3, equation (17), and standard expressions for the Riemann
tensor with metric connection. �

Corollary 7 All non-vanishing orthonormal frame components of covariant derivatives of
the scalar curvature R up to second order, shown below, are Q-functions independent of
angular coordinates ϑ and they have the following leading terms

R ∼ − 1

16
(DA − 1)(DA + 2)k̇2(r2h)2,

∇̂0R ∼ −1

2
k̇r2h(∼ R),

∇1R ∼ −krh(∼ R),

∇̂0∇̂0R ∼ +3

8
k̇2(r2h)2(∼ R),

r∇0∇1R ∼ +1

2
kk̇(r2h)2(∼ R),

∇̂b∇̂bR ∼ −1

8
k̇2(r2h)2(∼ R),

[
∇̂1∇̂1 − ∇̂�∇̂�

]
R = |g11|[∂1 − r−1(1 − kr2h)]∂1R ∼ −2ke−2a(∼ R),

�R ∼ +1

8
(DA + 2)k̇2(r2h)2(∼ R),

(∇R)2 ∼ +1

4
k̇2(r2h)2(∼ R)2,

the copy-index A suppressed again.

Proof Follows from Corollary 6. Obviously, “diagonality” is not preserved. Moreover, nega-
tive powers of h appear in both ∇̂1∇̂1R and ∇̂�∇̂�R. Still, the Lemma 5 holds, see Remark 8.
Thus we may proceed by treating the leading terms only. �

Thus we have seen that the leading coefficients of the Riemann tensor, its contractions
and Ricci scalar derivatives (up to second order) are proportional to k̇. In case of the standard
GR, the CRs leading terms will indeed yield a simple ordinary differential equation of type
“constant × k̇ = 0”.

5 A Class of F(R) Gravities

Definition 5 So called (metric) F(R) models are described by the following variational
principle [23, 24] Lgr. = F(R[g]) resulting into generalised Einstein tensor

F Gμν = F (1)Rμν − 1

2
Fgμν + [−∇μ∇ν + gμν�]F (1), (27)

F (1) has the following meaning F (j) = dj F

dRj .
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We restrict our attention to a narrow class of gravity models that can be treated easily in the
adopted approach.

– The first model is

F = Rw Pn(R)

Pm(R)
, (28)

with

w ∈ R, Pn =
n∑

p=0

αpRp, Pm =
m∑

p=0

βpRp.

αn and βm are assumed to be non-vanishing, and we are primarily interested in the case
of w ∈ Z.

– The second model is

F = Pm(R)eλPn(R), λ �= 0, n ≥ 1, (29)

where λ is a constant parameter.

Remark 9 Let us comment on the F(R) model (28).

– We can divide the examination into two separate sub-cases w = 0 and w ∈ (0,1).

Indeed, if w ∈ Z, then Rw can be absorbed into either Pn (in case of w ≥ 0 to obtain
Pn+w/Pm) or Pm (in case of w ≤ 0 to end up with Pn/Pm+|w|).

If w �∈ Z, the integer-part of w can be absorbed into the ratio of polynomials. For this
reason(s), it suffices to consider w ∈ [0,1) only.

– It will prove useful to characterise the model by x ≡ w + n − m.

– We do not consider cosmological constant in the gravity Lagrangian and therefore the
polynomial model (28) w = 0 does not contain the case n = m.

Pn

Pm=n

= αmβ−1
m + Pn̄

Pm=n

, n̄ < n = m. (30)

The underlined constant term that can be interpreted as cosmological constant and there-
fore will not be considered in the gravity part of Lagrangian.

Thus n = m is equivalent to “n = ” n̄ < m (with cosmological constant addition to the
matter sector).

6 Analysis of the CR—the F(R) Models

At the light of the previous sections previews and preparations, we shall cast the CR into a
Q-form, find the leading terms, apply Lemma 5, (21), to obtain a simple ordinary differential
equation for the curvature scalar k and examine it.

pR − �R = 0 is assumed whenever we examine a non-trivial copy with Dcopy = 2. other-
wise, pR − �R �= 0 is implicitly assumed.

The standard GR, representing a special case of F(R) gravity models, will be treated
first.
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6.1 Standard GR

Lemma 7 All the CR listed in Table 1, including perfect-fluid-like source with κ = 0 and
co-moving bulk viscous fluid with either heat flow or null fluid with pR − �R = 0 in case of
some copies, in the standard GR gravity model imply k̇ = 0, except for the following

– Diagonal matter stress-energy-momentum tensor sources that imply (DA −2)k̇A = 0, ∀A.

– Co-moving bulk viscous fluid with heat flow CR in case of copies A with DA > 2 are
identically satisfied (thus enabling the Ströbel’s solution in case of N = N∗ = 1).

In case of DA = 2, we obtain k̇B = 0, ∀B �= A, i.e. N∗ = 1 is enforced, but the A-copy
itself cannot be examined within our approach.

– Co-moving bulk viscous fluid with null fluid DA = 2 reproduces the same situation as in
case of co-moving bulk viscous fluid with heat flow.

Proof We again suppress the copy index for the sake of brevity.

– Rastall trace-free stress-energy-momentum tensor sources

0 = Tr G = −1

2
(D − 2)R ∼ −1

2
(D − 2)(∼ R).

The above leading term relation represents a simple ordinary differential equation

0 = (D − 2)(DA − 1)(DA + 2)k̇2 ⇒ k̇ = 0.

– Co-moving bulk viscous fluid with heat flow is identically satisfied for all DA > 2 copies.
In case of DA = 2 and pR − �R = 0, one obtains CR

0 = Ĝ1A1A
∼B �=A

1

2
(∼B R) ⇒ k̇B = 0.

This reduces the copy-ansatz to N∗ = 1. The remaining copy A yields no information.
– Diagonal metric stress-energy-momentum tensor sources and co-moving bulk viscous

fluid with null fluid yields

0 = Ĝ01A
= R̂01A

⇒ (DA − 2)k̇A = 0.

In case of the latter matter source and the (single non-trivial) copy A with DA = 2, as-
sumption of pR − �R = 0 leads to 0 = Ĝ1A1A

already examined above.
– The perfect-fluid-like source (N = 1) simplifies to

0 = −
(
Ĝ01

)2 ⇒ (D − 2)k̇ = 0.

Since we deal with a single spatial copy space-time, D > 2 and k̇ = 0 follows.
– The fluid(-like) sources with κ = 0 and/or pR − �R = 0 yield

0 = Ĝ�� = Ĝbb ∼ − 1

16
[D2

A − 2](k̇r2h)2 ⇒ k̇ = 0.

– The Proca field CR becomes

0 = (16) ∼ − 1

28
c0c1(k̇r2h)4,
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with

c0 = [D − (D − 2)γ ], c1 = [(D + 1) − 2γ ].
If c0c1 = 0, we only sketch the proof without going into details.

One may examine the were-next-to-leading terms of order M = 3 to obtain relations
k̇ = k̇(a). Then (16) becomes a Q-function/equation of order M = 2 of the type

0 = w2:2r4h2 + w1:2r2h2 + w1:1r2h + w0:0

=
[
w2:2 − k

4
w1:2

]
r4h2 + [w1:2 + w1:1] r2h + w0:0,

where we have used h ≡ 1 − 1
4kr2h in the M = 2 term of the first line in the above

expression.
Repeated applying of the Lemma 5 yields

0 = w2:2 − k

4
w1:2, 0 = w1:2 + w1:1, 0 = w0:0.

Using the above relations, one finds that—in both cases of either c0 = 0 or c1 = 0—the
equations are not consistent. Thus the k(t) FLRW metric cannot be a solution to them. �

Remark 10 The co-moving bulk viscous fluid with heat flow seems to be a promising can-
didate as to supporting the metric ansatz (17). But using the EOM for the matter, covariant
divergence of the metric stress-energy-momentum tensor, yields a not very encouraging re-
sult

(DivT )1A
∼B q1A

(∼B Divu) ⇒ (DA − 2)k̇Ak̇B = 0 ∀B �= A.

Which suggests that co-moving bulk viscous fluid with heat flow may not support the N∗ > 1
copy-cat space-time (17).

If there is no non-trivial copy with Dcopy > 2, the above equation is identically satisfied.
Assume ∃C : DC > 2. Then the above equation restricting k̇ yields

∃C : DC > 2 ⇒ k̇C k̇B = 0 ∀B �= C. (31)

There are two ways to satisfy the equation (31).

⎧
⎪⎨

⎪⎩
k̇C = 0

{∃H �= C : DH > 2 return to (31) &C → H

� ∃H �= C : DH > 2(DH − 2)k̇H k̇B ≡ 0

k̇B = 0 → N∗ = 1

Repeating the analysis, one finds that either N∗ > 1 and all non-trivial copies have Dcopy = 2
or N∗ = 1.

Still, both cases are interesting on its own. The latter one may enable for N > N∗ = 1
generalisation of the Ströbel solution.

6.2 The F(R) model (28)—F = RwPn/Pm

We are interested in the leading term of Q-form cast CRs, hence the leading term of Q-cast
generalised Einstein tensor.
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Then, how to turn it into a Q-form at all? Multiply the expression in question so that all
negative and non-integer powers of R and Pm in denominators are eliminated. F (3) will in
general contribute with P −4

m and Rw−3. Thus we see that orthonormal frame components of

R3−wP 4
m

F Ĝμν = αnβ
3
mRn+3m F Ĝμν + · · · (32)

are of the Q-form. The dots in the above formula indicate terms of lower order in the scalar
curvature, i.e. of lower order M.

The leading term will be produced by the first term on right hand side of (32). Moreover,
we may skip the non-zero passive pre-factor at the calligraphic Einstein tensor E in.

Indeed, vanishing of the pre-factor contradicts either the assumptions on the F(R) model
in question (αnβm �= 0) or the metric (we assume non-trivial copy and R = 0 implies k̇ = 0)
Thus it must be non-zero and we may treat it as a passive multiplicative factor.

Hence it suffices to deal solely with the calligraphic Einstein tensor. Transition to the
calligraphic form will be indicated by � .

Lemma 8 Leading terms of the calligraphic Einstein tensor—introduced in (32)—compo-
nents are given by

F Ĝαβ ∼ 1

32
εαβ(∼ R)2.

ε00 ∼ +(DA − 1)[4x(x − 2) + (DA + 2)]k̇2(r2h)2,

εbb ∼ +[2DAx − (DA − 1)(DA + 2) − 4x(x − 1)(DA + 2x − 3)]k̇2(r2h)2,

ε01 ∼ +16x[(DA − 2) − (x − 1)2kr2]k̇e−ar3h,

Tr ε ∼ +[(DA − 1)(DA + 2)(D − 2x) + 4x(x − 1)(D − 1)(DA + 2x − 2)]k̇2(r2h)2,

the difference

ε11 − ε�� ∼ −32x(x − 1)
[
(x − 2)kr2 − 2

]
ke−2a.

In the above formulae, x = w + n − m.

Proof First, one finds the highest power of R in Q-cast F (i), which reads

R3−wP 4
mF (i) =

⎛

⎝
i−1∏

j=0

(x + j)

⎞

⎠αnβ
3
mRn+3m+3−i .

Then one uses Corollary 6 to determine the leading terms of all the contributing expressions
involving Ricci scalar derivatives in the explicit formula for F G. �

When compared to standard GR, we have one more parameter entering the leading term
coefficient—the parameter x. If suitably fixed, it may lead to vanishing of the coefficient and
consequently the leading term. Then, no information on (vanishing of) k̇ is obtained. The
were-next-to-leading terms can be examined but we shall not pursue the analysis beyond the
leading term here.

Lemma 9 Leading terms of the CRs presented in Table 1—including perfect-fluid-like
source with κ = 0 and co-moving bulk viscous fluid with either heat flow or null fluid with
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pR − �R = 0 allowed in case of some copies—with the restrictions presented below imply
k̇ = 0.

– Diagonal metric stress-energy-momentum tensor matter sources: if DA = 2, then F �=
P1(R).

– Co-moving bulk viscous fluid with null fluid: if DA = 2, then x �∈ {−1/2,1}.
– Rastall trace-free matter sources: both

0=+�w,

0 �=+(DA − 1)(DA + 2)(D − 2x) + 4x(x − 1)(D − 1)(DA + 2x − 2)

}
(33)

hold simultaneously; the latter simplifies to 0 �= D + 2x in case of N = 1 (DA = D and
so D − 1 �= 0).

– Perfect-fluid-like source: D �= 4 − 2x

– Co-moving bulk viscous fluid with heat flow: DA ≥ 2 with F �= P1(R) (excluding the
standard GR), moreover if DA > 2 then x �= 3/2 or if DA = 2 then x �∈ {−1/2,1}.

– Proca field: both

�w = 0 �= C0C1 (34)

required to hold simultaneously.

C0 = +[1 + (D − 2)γ ]BI − [1 − (D − 2)γ ]BII,

C1 = +2γBI + 2[1 + γ ]BII,

where the BI and BII are defined as

BIk̇
2(r2h)2 := ε00, BIIk̇

2(r2h)2 := εbb.

Proof Is quite straightforward and is illustrated on a single fully treated example of a source
with diagonal metric stress-energy-momentum tensor.

– The diagonal metric stress-energy-momentum tensor matter source CR examination
shows

0 � F G01r ∼ 1

2
x[(DA − 2) − (x − 1)2kr2]k̇(r2h)2(∼ R)2.

Applying Lemma 5 yields

0 = 1

8
x[−(DA − 2) − 4(x − 1)2]kk̇

and consequently

0 = [(DA − 2) + 4(x − 1)2]k̇. (35)

The implication is true because x = 0 is not considered, see Remark 9. Solving the con-
stant pre-factor with respect to DA, one obtains

DA = 2 − 4(x − 1)2 ≤ 2.

In case of DA > 2, k̇ = 0 is enforced by (35).
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In case of DA = 2, it follows (corresponding copy) R01 ≡ 0 and we must have x = 1,

unless k̇A = 0 which we try to avoid. The restriction on x allows us to write an analogue
of (30)

Pn=m+1

Pm

= αm+1β
−1
m R + 2� + Pn̄

Pm

, n̄ < m. (36)

The full expression for F G01 contains at least second order derivatives of F because R01 =
0. Then only the Pn̄/Pm enters F G01, thus the x can be replaced with x̄ ≡ n̄−m < 0. This
leads to

F G01r � F G01r = −1

2
x̄(x̄ − 1)2kk̇r4h2(∼ R)2.

The fact that x̄ ≤ −1 enables us to conclude k̇ = 0.

Examination of the remaining matter sources follows the same pattern—one applies �,

finds the leading term, obtains corresponding ordinary differential equation of the form

Z(DA,x)k̇ = 0,

where Z is a polynomial function of its arguments.
If Z(x = 0) = 0 and Z(x = 1) = 0 occurs, these cases can be examined by decomposing

the ratio of Pn/Pm as done in (30) and (36).

– Rastall trace-free matter sources and the Proca field: The condition �w either sets w = 0,

no non-integer powers of R enter CRs, or enforces � = 0 so that non-integer powers of
R can be eliminated (by multiplying by e.g. R3−w in the linear-in-metric stress-energy-
momentum tensor CRs).

– Perfect-fluid-like source: Vanishing of the leading term coefficient’s constant pre-factor
of the � CR implies

0 = x[D − 2 + 4(x − 1)2][D + 2(x − 2)]
x = 0 need not be considered, the first square bracket term yields D ≤ 2 and so only the
last contribution remains.

– Co-moving bulk viscous fluid with null fluid CR’s leading term is produced by F Ĝ01, i.e.
it reproduces the diagonal metric stress-energy-momentum tensor matter source. �

6.3 The F(R) Model (29)—F = Pm exp(λPn)

Lemma 10 All the CR in Table 1, including perfect-fluid-like source with κ = 0 and co-
moving bulk viscous fluid with either heat flow or null fluid with pR − �R = 0 in case of
some copies, the Proca field subject to condition � = 0, imply k̇ = 0.

Proof Each linear (respectively quadratic) CR can be cast into the Q-form by multiplying
by exp(−λPn) (respectively exp(−2λPn)); sometimes an additional condition � = 0 must
be imposed. The leading terms are those with the highest power of the parameter λ.

– Rastall trace-free stress-energy-momentum tensor sources

0 = Tr F G × e−λPn

= (D − 1)(∇R)2Pm

(
λP ′

n

)3 + · · · .
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The dots indicate terms of lower order. Vanishing of the not underlined part in the first
term on the right hand side in the above equation is not consistent with the assumptions
on this F(R) model (D ≥ 4, λ �= 0, Pm �= 0 and n ≥ 1). Moreover, its vanishing in case
of m > 1 and/or n > 1 would imply vanishing of (∼ R) enforcing k̇ = 0. Thus we may
surpass this pre-factor—analogously to defining F E in part of the Q-form cast generalised
Einstein tensor in the F(R) model (28).

The remaining relevant part is underlined and its vanishing yields

0 = (∇R)2 ∼ (∼ ∇̂0R)2 ⇒ k̇ = 0

as is clear from Corollary 6.
– The diagonal metric stress-energy-momentum tensor sources CR reads

0 = F G01 × re−λPn

= (∇0R)(∇1R)rPm

(
λP ′

n

)3 + · · · ⇒ k̇ = 0.

– Co-moving bulk viscous fluid with heat flow CR is

0 =
(

F Ĝ11 − F Ĝ��

)
× e−λPn

= (∇̂1R)2Pm

(
λP ′

n

)3 + · · · ⇒ k̇ = 0.

The leading term is different in case of pR − �R = 0 Dcopy ≥ 2. It is produced by the
metric proportional part of F Ĝ11 and the CR is

0 =
[
(∇R)2 − (∇̂1R)2

]
Pm

(
λP ′

n

)3 + · · · ⇒ k̇ = 0.

– Co-moving bulk viscous fluid with null fluid matter source CR has the form

0 =
[

F Ĝ01 − sk

(
F Ĝ11 − F Ĝ��

)]
× e−λPn

= −
[
(∇̂0R) − sk(∇̂1R)

]
(∇̂1R)Pm

(
λP ′

n

)3 + · · · ⇒ k̇ = 0.

The conclusion remains unchanged again if we examine pR − �R = 0 Dcopy ≥ 2. The
leading term is due to metric proportional part of F Ĝ11, namely the relevant part is (∇̂0R)2

as in the case of co-moving bulk viscous fluid with heat flow.
– The perfect-fluid-like source CR is a bit surprising—the term proportional to (F (3))2 van-

ishes identically—and it reveals

0 =
[
−2(∇̂0R)(∇̂1R)(∇̂0∇̂1R) + (∇̂0R)2([∇̂1∇̂1 − ∇̂�∇̂�]R)

+ (∇̂1R)2 ([∇̂0∇̂0 + ∇̂�∇̂�]R)
]
F (3)F (2) + · · ·

and we shall pay attention to the relevant part, i.e. the square bracket [∗] term.

0 = [∗] ∼ −1

2
[1 + kr2]kk̇2e−2a(r2h)2(∼ R)3 ⇒ k̇ = 0

as follows from applying Lemma 5.
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– The Proca field: The requirement � = 0 is necessary in order to be able to cast the CR
into a Q-form by multiplying it by exp(−2λPn).

The CR becomes

0 = +c0c1

[
(∇R)2

]2 (
F (3)

)2 + 2c0c1

[
(∇̂0R)2(∇̂0∇̂0R) + (∇̂1R)2(∇̂1∇̂1R)

]
F (3)F (2)

+
⎧
⎨

⎩−2(c0 + c1)
2 (∇̂0R)(∇̂1R)(∇̂0∇̂1R)︸ ︷︷ ︸

M<10

+ (c2
0 + c2

1)[(∇̂0R)2(∇̂1∇̂1R)︸ ︷︷ ︸
M=10

+ (∇̂1R)2(∇̂0∇̂0R)︸ ︷︷ ︸
M<10

]

+ (c0 − c1)[2(D − 1) − (c0 − c1)] × (∇R)2(∇̂�∇̂�R)︸ ︷︷ ︸
M=10

⎫
⎬

⎭F (3)F (2) + · · ·

with c0 = 1 − (D − 2)γ and c1 = −2[1 + γ ]. Orders of the expressions in curly brackets
are indicated.

c0c1 �= 0 yields k̇ = 0. If, on the other hand, c0c1 = 0, the first two terms of the above
relation vanish and the relevant part of the expression is determined by the curly bracket
term {∗}.

c0 = 0 : 0 = {∗} ∼ − 1

25
(D − 2)c2

1 k̇
4(r2h)4(∼ R)3,

c1 = 0 : 0 = {∗} ∼ − 1

24
c2

0 k̇
4(r2h)4(∼ R)3.

Both sub-cases imply k̇ = 0. �

7 Summary and Outlook

The results of previous section can be put together into

Theorem 1 Considered matter sources in the metric F(R) gravity models do not admit a
non-trivial k(t) FLRW metric with the copy-cat metric ansatz (17) according to the Table 2
(which lists sources and conditions for k̇ = 0).

Possible generalisations and outlook for future work, within the framework adopted in
this article, are

– Troublesome values of parameters leading to vanishing of the constant factor in the lead-
ing term coefficient (namely adjusting DA, x and γ ) to be examined in detail. One may
expect, as in the case of standard GR, that the next-to-leading terms yield relation k̇(a).

Then, examining terms of order M lowered once more by one will include terms due to
αn−1 and/or βm−1, i.e. more detailed information on the function F(R) will be required.

– Treating less simple F(R) models and also F(R,�) models—we have seen that �R is a
Q-function and so will be both �pR and its second order covariant derivatives.

Indeed, the approach allows for inclusion of more complicated scalars built from the
Riemann tensor into the gravity part Lagrangian. A simple example is a general order



494 Int J Theor Phys (2010) 49: 468–496

Table 2 On
Theorem 1—conditions required
so that k̇ = 0

BVF = Bulk Viscous Fluid,
HF = Heat Flow, NF = Null
Fluid

Sources F(R) [� not in F ]

RwPn/Pm PmeλPn

Additional details x ≡ w + n − m λn �= 0

Diagonal sources DA = 2: F �= P1 –

N∗ ≥ 1

Co-mov. BVF + HF DA > 2: x �= 3
2 , F �= P1 –

N∗ ≥ 1 DA = 2: x �∈ {− 1
2 ,1}

Co-mov. BVF + NF DA = 2: x �∈ {− 1
2 ,1} –

N∗ = 1

Perfect-fluid-like D �= 4: x �= −(D−4)
2 –

N = 1

� = const. �w = 0 � = 0

Trace-free sources Eqn. (33) for F �= P1 –

N∗ ≥ 1

Proca Eqn. (34) for F �= P1 –

N = 1

Lovelock gravity model [49] in case of which the generalised Einstein tensor is already of
the Q-form. In the Lovelock model, the leading terms can be obtained by hand in case of
low order (in Riemann tensor) models, e.g. linear Gauss–Bonnet addition [50, 51]. In case
of higher order model, some GR/Riemannian geometry software tools can be of help.

– Include another non-equivalent (whenever k̇ �= 0) k(t) FLRW spatial section

f dr2 + r2d�2, f −1 ≡ 1 − k(t)r2,

d� denotes volume element of a unit radius sphere of appropriate dimension, into the
metric (17). This spatial copy has the same symmetry as those of the copy-cat metric
examined, i.e. Postulate 2 remains unchanged and hence the CRs listed in Table 1 are also
unaltered. Lemma 5 can still be applied; it suffices to replace the explicitly appearing k

by −4k.

– Generalising the copy-cat ansatz (17) to a brane-world inspired forms e.g. by allowing the
scale factors aA to depend on the extra coordinate(s). Notice a non-trivial DA = 2 copy
already adds a brane-world flavour to an N > N∗ = 1 k(t) FLRW ansatz.

– One may also study effective EOMg on a brane. It contains terms quadratic in the metric
stress-energy-momentum tensor T [52], which at least in case of the perfect-fluid-like
matter source do not change the form of T so that the CR can be obtained again. The
effective EOMg also contains a bulk-Weyl term, which may have a form that enables one
to cast the CR into a Q-equation.

The above suggestions involve altering the gravity/geometry set-up. Combinations of
(interacting) sources and massive Dirac spinor can prove to be more interesting since the
leading term(s) analysis performed indicates that non-trivial k(t) FLRW (space-section) is
rather not allowed unless the CR is identically satisfied.

It will be interesting to find out if at least some matter sources combinations allow for
obtaining an analogue of CR, possibly after at least partially solving EOM for the matter
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sources. A two simple examples were already examined—the Abelian Yang–Mills field,
the Postulate 1 was applied to EOMA to find metric stress-energy-momentum tensor is
diagonal, and the trace-free sources (see Remark 5; the matter sources combination given
can be of interest especially in D = 4).

The analysis performed in this article shows that copies with Dcopy = 2 and standard GR
co-moving bulk viscous fluid with heat flow are promising candidates in the meaning that
they may support an N ≥ 2 non-trivial k(t) FLRW space-time.

But we have seen the latter case becomes restricted if one considers the EOM for the
matter source, see Remark 10.

We may summarise that using a simple tool, namely the Q-functions, we have obtained
non-existence results/conditions concerning the metric ansatz (17), generalising the one of
Ströbel, in two classes of metric F(R) models. Some sub-cases indicate the space-time (17)
may be supported by (some of the) the examined sources.

This approach can be applied to the copy-cat metric containing both h-copies (as in
equation (1)) and f -copies (proposed in this section) in a generalised set-up, motivated by
cosmology and/or astrophysics, as already discussed above. Moreover, one may consider to
apply it to a suitable sub-case of a Szekeres–Szafron ∂β/∂z = 0 family [12], which is also
of cosmological importance. Considering such a geometry, its two-dimensional xy-plane
has metric similar to the ansatz (1) and one may try to extend the metric by allowing the
“curvature parameter” of the xy-plane to depend on time. Therefore the Q-functions seems
to be a tool viable well beyond the scope of this article.

Generalising the conditions for non-existence and analysing the yet undecided sub-cases
is an open issue for future work.
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